Development of a cooling system for geothermal borehole probes

Benedict Holbein

Why the system is needed
• applications
• challenge
• benefit

How the system works
• concept
• process
• components
• experiments

What the system misses
• problems
• next steps
• cooperation

Structure of presentation
Why the system is needed

- applications
- challenge
- benefit

Interesting requests

- long operation times
- many operations at frequent intervals
- little amount of maintenance between operations

Application example

- long operation times with different modules
- hot environments

Protection for electronics required
Benedict Holbein – development of a cooling system for geothermal borehole probes

challenges and benefits

- no time limitations for operations
- operations also in very hot boreholes
- standard electronics usable
- heat protected measurement advices

Why the system is needed
- applications
- challenge
- benefit

application range

environment / operation

<table>
<thead>
<tr>
<th>depth</th>
<th>> 5 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>borehole pressure</td>
<td>> 600 bar</td>
</tr>
<tr>
<td>borehole temperature</td>
<td>> 200 °C</td>
</tr>
<tr>
<td>borehole media</td>
<td>corrosive thermal water</td>
</tr>
<tr>
<td>borehole diameter</td>
<td>< 8 1/2 inch</td>
</tr>
<tr>
<td>cool – room temperature</td>
<td>< 70°C</td>
</tr>
</tbody>
</table>
The Components (I)

<table>
<thead>
<tr>
<th>Environment / Operation</th>
<th>Cooling System</th>
</tr>
</thead>
<tbody>
<tr>
<td>depth > 5 km</td>
<td>-</td>
</tr>
<tr>
<td>borehole pressure > 600 bar</td>
<td>-</td>
</tr>
<tr>
<td>borehole temperature > 200 °C</td>
<td>-</td>
</tr>
<tr>
<td>borehole media corrosive thermal water</td>
<td>-</td>
</tr>
<tr>
<td>borehole diameter < 8 1/2 inch</td>
<td>-</td>
</tr>
<tr>
<td>cool – room temperature < 70°C</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cooling Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant</td>
</tr>
<tr>
<td>Acetone</td>
</tr>
<tr>
<td>Evaporation temperature</td>
</tr>
<tr>
<td>Max. working temperature</td>
</tr>
<tr>
<td>Surrounding media</td>
</tr>
<tr>
<td>Condensing pressure</td>
</tr>
<tr>
<td>Max. diameter inside</td>
</tr>
<tr>
<td>Max. diameter outside</td>
</tr>
</tbody>
</table>

Boundary Conditions
- Environmental
- Operational
- Cycle process

Concept of the Cooling System

- Cycle process
 - Refrigerant
 - Aligned process conduct
 - Heat conduction

- Insulation
 - Vacuum
 - MLJ

- Components
 - Robust materials
 - Custom-built engineering
 - Modular design
The cycle process

- refrigerant
- aligned process conduct
- heat conduction

- insulation
 - vacuum
 - MLI

- components
 - robust materials
 - custom-built engineering
 - modular design

The cycle process

- sub-processes: acetone
 - evaporation ($4 \rightarrow 1$)
 - $\approx 56.5 ^\circ C$
 - ≈ 1 bar
 - compression ($1^* \rightarrow 2$)
 - $\approx 230 ^\circ C$
 - ≈ 40 bar
 - condensation ($2^* \rightarrow 3^*$)
 - $\approx 215 ^\circ C$
 - ≈ 40 bar
 - expansion ($3 \rightarrow 4$)
 - ≈ -39 bar
 - $\approx 140 ^\circ C$

refrigerating capacity: after C. Clapeyron

- $\frac{dT}{dx} \equiv \frac{m}{T_1 + (T_1 - s_2) / (h_1 - h_4)}$
The insulation

- heat input from outside
- heat radiation
- heat conduction
- heat convection

- Multi Layer Insulation (MLI)
- Teflon (PTFE)
- vacuum Insulation

- radial
 - Multi Layer Insulation
 - vacuum

- axial
 - solid insulation
 - PTFE
 - ceramic wool

* d/l: 110/900 mm
* max. refrigerating capacity: 110 W

The Components (I)

- actual evaporator:
 - pressure-resistant: 1 bar (l) / 1 bar (o)
 - max. diameter: 110 mm
 - mounting surface for electronic
 - maximal heat conduction surface
 - high heat transfer coefficient

 * wound up tube heat exchanger
 * copper
 * d/l: 110/1400 mm
 * max. refrigerating capacity: 110 W

- new evaporator:
 - grooved plate heat exchanger
 - copper
 - d/l: 110/800 mm
 - max. refrigerating capacity: 190 W

- main components
 - evaporator
 - condenser
 - compressor
 - expansion valve

- inside
 - refrigerant
 - acetone
 - max. inside pressure
 - ~1 bar
 - max. inside temperature
 - ~60 °C

- surrounding media
 - air
 - max. outer pressure
 - ~1 bar
 - max. outer temperature
 - ~70 °C
 - max. diameter
 - 110 mm
The Components (II)

condenser:
- pressure-resistant: 40 bar (i) // 600 bar (o)
- max. diameter: **170 mm**
- corrosion-resistant
- maximal heat conduction surface
- high heat transfer coefficient

straight tube heat exchanger

material: Inconel 600; Nicofer 721 ...

d:l: 170/2000 mm

compressor:
- pressure-resistant: 40 bar (i) // 600 bar (o)
- compression ratio: 1/40
- max. diameter: **170 mm**
- corrosion-resistant
- acetone gas-resistant
- low power input

piston compressor

gaskets: PTFE; PCTFE; PVDF ...

d:l: 170/1200 mm

experiments (I)

temperature profiles

vacuum influence

experiments
- Insulation
- Heat transfer
- Sub-processes
- Cycle process

test set-up
- Thermocouples inside cool room
- Heating jacket outside
- Insulation installed

- **heating up from outside**: > 200°C
- **vacuum inside barrier**: < 5 E-4 mbar

Prof. Dr. Max Mustermann | Musterfakultät

Institute of Applied Computer Science IAI

Benedikt Holbein – development of a cooling system for geothermal borehole probes

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association
Benedict Hollein – development of a cooling system for geothermal borehole
cooling system

experiments (IVa)

- simulation of heat transfer improvement with CPU-fan installed on the load board
- significant improvement caused by acceleration of air

13.12.2013

Benedict Holbein – development of a cooling system for geothermal boreholes

Institute of Applied Computer Science (IAI)

cooling system

experiments (IVb)

- heating up from outside: > 200°C
- vacuum inside barrier: < 0.5 E-4 mbar
- liquid acetone in evaporator: ~ 700 ml
- internal heat input: 20 Watt

- slight improvement but load temperatures still too high

13.12.2013

Benedict Holbein – development of a cooling system for geothermal boreholes

Institute of Applied Computer Science (IAI)
open questions

materials
- gaskets + joints for compressor
- delivery times and batch
- grindability vs. shape

thermodynamics
- process control
- refrigerants

What the system misses

- problems
- next steps
- cooperation

resources
- cooperation

open tasks

components
- optimized evaporator
- optimized condenser

What the system misses

- problems
- next steps
- cooperation

missing components
- new evaporator
- condenser
- lab compressor
- expansion valve

missing resources
- laboratory equipment

future experiments
- evaporation v.2
- condensation
- compression
- heat exchange v.2
- expansion
- complete cycle process
Prof. Dr. Max Mustermann | Musterfakultät

2-stage system

What the system misses

- problems
- next steps
- cooperation

2 stages concept

- condenser of stage 1 inside cool room of stage 2
- condenser of first stage = evaporator of 2nd stage
- 2nd refrigerant for other boundary conditions required
- 2nd complete cycle process at higher temperature level

open tasks

An active cooling system for borehole probes would be a great advance

The concept for cooling system works

There’s still a lot of work to do
The insulation (I)

- Multi Layer Insulation (MLI)
- Vacuum

- Solid insulation
 - PTFE
 - Ceramic
 - Wool
The insulation (II)

- **Vacuum Insulation**
 - Temperature profiles influenced by vacuum

- **Heat Convection**

Vacuum experiment:
- Heating jacket around housing: 200°C
- Vacuum inside barrier: < 9.5 E-4 mbar

Radial
- Multi Layer Insulation
- Vacuum

Axial
- *Solid insulation*
 - PTFE
 - Ceramic
 - Wool

Open Tasks

- Prototype
- Borehole probe cooling system

What the system misses
- Problems
- Next steps
- Cooperation

Preparation
- Construction of components
- Testing
- Optimization

Ready for operation prototype
Benedict Holbein – development of a cooling system for geothermal borehole probes

Contact Information

web:
http://geothermiewiki.iai.edu/index.php

mail:
benedict.holbein@kit.edu

flyer:
summarized information to take away

Time Table

<table>
<thead>
<tr>
<th>Year</th>
<th>Tasks</th>
</tr>
</thead>
</table>
| 2013 | - sub-process experiments
- construction of missing components
- realisation of cycle process in laboratory |
| 2014 | - completion of test
- construction of prototype
- first field test ??? |

What the system misses

- next steps
- problems
- cooperation

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association